Results of Proficiency Test Gear Oil (used) March 2020

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Author:

ing. G.A. Oosterlaken-Buijs ing. A.S. Noordman-de Neef & ing. R.J. Starink Correctors:

Report: iis20L02

June 2020

CONTENTS

1

2

2.1	ACCREDITATION	. 3
2.2	PROTOCOL	. 3
2.3	CONFIDENTIALITY STATEMENT	. 3
2.4	SAMPLES	. 4
2.5	STABILITY OF THE SAMPLES	. 5
2.6	ANALYZES	. 5
3	RESULTS	. 6
3.1	STATISTICS	. 6
3.2	GRAPHICS	. 7
3.3	Z-SCORES	. 7
4	EVALUATION	. 8
4.1	EVALUATION PER SAMPLE AND PER TEST	. 8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	11
4.3	COMPARISON OF THE PROFICIENCY TEST OF MARCH 2020 WITH PREVIOUS PTs	12
App	endices:	
1.	Data, statistical and graphic results	14
2.	Other reported test results	
3.	Analytical details	
4.	Number of participants per country	37

5.

1 Introduction

Since 2017 the Institute for Laboratory Studies (iis) organizes a proficiency test for used Gear Oil. During the annual proficiency testing program 2019/2020 it was decided to continue the proficiency test for the analysis of used Gear Oil.

In this interlaboratory study 28 laboratories in 20 different countries registered for participation. See appendix 4 for the number of participants per country. In this report the results of the proficiency test for used Gear Oil are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send two different samples of used Gear Oil, one bottle of 0.5L labelled #20031 for various analyzes and one 50mL PE bottle labelled #20032 for metals determination only. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A batch of approximately 35 liters of used Gear Oil obtained from a third party was used for the preparation of the subsamples for the regular analyzes. After homogenization 50 amber glass bottles of 0.5 liter were filled and labelled #20031. The homogeneity of the subsamples #20031 was checked by determination of Density in accordance with ASTM D4052 and Water according to ASTM D6304 procedure C on 8 stratified randomly selected subsamples.

	Density at 15°C in kg/L	Water in mg/kg
Sample #20031-1	0.89206	190
Sample #20031-2	0.89203	217
Sample #20031-3	0.89202	178
Sample #20031-4	0.89201	193
Sample #20031-5	0.89205	219
Sample #20031-6	0.89205	196
Sample #20031-7	0.89203	186
Sample #20031-8	0.89204	215

Table 1: homogeneity test results of subsamples #20031

From the above test results the repeatabilities were calculated and compared with 0.3 times the corresponding reproducibilities of the reference test methods in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Density at 15°C in kg/L	Water in mg/kg
r (observed)	0.00005	43.8
reference test method	ISO12185:96	ASTM D6304:16e1
0.3 * R (reference test method)	0.00015	121.5

Table 2: evaluation of the repeatabilities of subsamples #20031

The calculated repeatabilities were in agreement with 0.3 times the corresponding reproducibilities of the reference test methods. Therefore, homogeneity of the subsamples was assumed.

Approximately 3 liters was taken from the remaining part of the batch used Gear Oil and spiked with various metals using Conostan standards: Aluminum, Copper, Silicon and Tin. After homogenization 50 PE bottles of 50mL were filled and labelled #20032.

The homogeneity of the subsamples #20032 was checked by determination of Copper as Cu in accordance with ASTM D5185 on 8 stratified randomly selected subsamples.

page 4 of 38 Gear Oil - used: iis17L02

	Copper as Cu in mg/kg
Sample #20032-1	13.83
Sample #20032-2	13.41
Sample #20032-3	13.97
Sample #20032-4	13.76
Sample #20032-5	13.72
Sample #20032-6	13.63
Sample #20032-7	13.68
Sample #20032-8	13.41

Table 3: homogeneity test results of subsamples #20032

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Copper as Cu in mg/kg
r (observed)	0.5
reference test method	ASTM D5185:18
0.3 * R (reference test method)	1.0

Table 4: evaluation of the repeatability of subsamples #20032

The calculated repeatability was in agreement with 0.3 times the corresponding reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one sample labelled #20031 and one sample labelled #20032 were sent on February 26, 2020. An SDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of used Gear Oil packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYZES

The participants were requested to determine on sample #20031: Total Acid Number, Density at 15°C, Flash Point PMcc, Kinematic Viscosity at 40°C and at 100°C, Viscosity Index, Membrane Filtration 5µm, Water and Level of Contamination (counts/mL and scale number).

On sample #20032: the elements Aluminum as Al, Barium as Ba, Boron as B, Cadmium as Cd, Chromium as Cr, Copper as Cu, Iron as Fe, Lead as Pb, Lithium as Li, Magnesium as Mg, Manganese as Mn, Molybdenum as Mo, Nickel as Ni, Potassium as K, Silicon as Si, Silver as Ag, Sodium as Na, Tin as Sn, Titanium as Ti, Vanadium as V, Calcium as Ca, Phosphorus as P, Zinc as Zn.

Also, some extra information was asked about the determination of Total Acid Number and level of Contamination.

It was explicitly requested to treat the samples as if they were routine samples and to report the test results using the indicated units on the report form and not to round the test results but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results, a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the appropriate reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 and 2 of this report. The laboratories are presented by their code numbers.

Directly after the deadline a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the test result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the unrounded (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers,

page 6 of 38 Gear Oil - used: iis17L02

this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

According to ISO5725 the original test results per determination were submitted to Dixon's, Grubbs' and/or Rosner's outlier tests. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by R(0.01) for the Rosner's test. Stragglers are marked by D(0.05) for the Dixon's test, by G(0.05) or DG(0.05) for the Grubbs' test and by R(0.05) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value, the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT, the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests, therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis.

The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve was projected over the Kernel Density Graph for reference.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements, e.g. ASTM reproducibilities, the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used. In general, when no literature reproducibility is available, another target may be used, like Horwitz or an estimated reproducibility based on former its proficiency tests. When a laboratory did use a test method with a reproducibility that is significantly different

from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation}
```

The z_(target) scores are listed in the result tables of appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. The usual interpretation of z-scores is as follows:

```
|z| < 1 good

1 < |z| < 2 satisfactory

2 < |z| < 3 questionable

3 < |z| unsatisfactory
```

4 **EVALUATION**

In this interlaboratory study some problems were encountered with the dispatch of the samples due to the COVID-19 pandemic. Two participants reported after the final reporting date and four participants did not report any test results at all. Not all laboratories were able to report all analyzes requested.

In total 24 participants reported 414 numerical test results. Observed were 25 outlying test results, which 6.0% of the numerical test results. In proficiency studies outlier percentages of 3% - 7.5% are quite normal.

Not all original data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER SAMPLE AND PER TEST

In this section the reported test results are discussed per sample and per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 5.

In the iis PT reports ASTM test methods are referred to with a number (e.g. D2270) and an added designation for the year that the test method was adopted or revised (e.g. D2270:10). If applicable, a designation in parentheses is added to designate the year of reapproval (e.g. D2270:10(2016)). In the test results tables of appendix 1 only the method number and year of adoption or revision e.g. D2270:10 will be used.

page 8 of 38 Gear Oil - used: iis17L02

Sample #20031

- Total Acid Number: This determination may be problematic dependent on the test method used. No statistical outliers were observed. The calculated reproducibility is in full agreement with the requirements of ASTM D664-A:18e2 BEP 60mL, but is not in agreement with BEP 125mL, IP 60mL and IP 125mL. Remarkably, three participants still used pH 11 for BEP instead of pH 10. In test method ASTM D664:18e2 pH 10 is mentioned.
- <u>Density at 15°C</u>: This determination was problematic. Two statistical outliers were observed and two other test results were excluded. The calculated reproducibility after rejection of the suspect data is not in agreement with the requirements of ISO12185:96.
- Flash Point PMcc: Both procedures (A and B) of ASTM D93 may be applicable for this determination (in-use vs used lubricating oil). The majority of the participants used procedure A. Remarkably, one participant used procedure C which is applicable to Biodiesel (B100).

 This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in full agreement with the requirements of ASTM D93-A:19.
- <u>Kinematic Viscosity at 40°C</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D445:19a.
- <u>Kinematic Viscosity at 100°C</u>: This determination was problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D445:19a.
- <u>Viscosity Index</u>: This determination was problematic. No statistical outliers were observed but two test results were excluded. The calculated reproducibility after rejection of the suspect data is not in agreement with the requirements of ASTM D2270:10(2016).
- Membrane Filtration 5μm: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D4055:04(2019).
- <u>Water</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D6304:16e1.

<u>Level of Contamination</u>: This determination was problematic. In total five statistical outliers

were observed over six parameters (3 in counts/mL and 2 in scale number) and 4 other test results were excluded. The calculated reproducibilities after rejection of the suspect data are not in agreement with the requirements of ASTM D7647:10(2018). No clear conclusion could be drawn from the reported analytical details (appendix 3).

Sample #20032

Aluminum: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D5185:18.

<u>Boron</u>: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ASTM D5185:18.

oddier is in agreement with the requirements of ASTM D3103.10.

<u>Copper</u>: This determination was not problematic. Two statistical outliers were

observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM

D5185:18.

Iron: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical

outlier is in agreement with the requirements of ASTM D5185:18.

<u>Silicon</u>: This determination was not problematic. Two statistical outliers were

observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM

D5185:18.

<u>Tin</u>: This determination was not problematic. One statistical outlier was

observed. The calculated reproducibility after rejection of the statistical

outlier is in agreement with the requirements of ASTM D5185:18.

<u>Calcium</u>: This determination may not be problematic Two statistical outliers were

observed and one other test result was excluded. The consensus value was below the application range of ASTM D5185:18. Therefore, no z-

scores were calculated.

<u>Phosphorus</u>: This determination was not problematic. Two statistical outliers were

observed. However, the calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM

D5185:18.

<u>Zinc</u>: This determination may not be problematic. One statistical outlier was

observed. The consensus value was below the application range of ASTM

D5185:18. Therefore, no z-scores were calculated.

page 10 of 38 Gear Oil - used: iis17L02

The majority of the participants agreed on a concentration near or below the limit of detection for all other elements mentioned in paragraph 2.6. Therefore, no z-scores were calculated for these elements. The test results of these components are given in appendix 2.

4.2 Performance evaluation for the group of Laboratories

A comparison has been made between the reproducibility as declared by the relevant reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from literature reference test methods (in casu ASTM, EN test methods) or previous proficiency tests are presented in the next tables.

Parameter	unit	n	average	2.8 * sd	R(lit)
Total Acid Number	mg KOH/g	19	0.727	0.427	0.406
Density at 15°C	kg/L	18	0.89207	0.00065	0.0005
Flash Point PMcc	°C	18	193.5	14.3	13.7
Kinematic Viscosity at 40°C	mm²/s	22	146.18	1.46	3.18
Kinematic Viscosity at 100°C	mm²/s	21	14.420	0.257	0.167
Viscosity Index		19	96.47	3.08	2
Membrane Filtration 5µm	%M/M	5	0.014	0.013	0.044
Water	mg/kg	21	252	298	466
Level of contamination					
- ≥ 4µm (c)	counts/mL	9	49635	70092	56088
- ≥ 6µm (c)	counts/mL	9	5781	7550	4394
- ≥14µm (c)	counts/mL	9	379	794	512
- ≥ 4µm (c)	scale number	11	22.4	2.9	1.7
- ≥ 6µm (c)	scale number	11	19.3	2.5	1.2
- ≥14µm (c)	scale number	11	14.9	4.4	2.0

Table 5: reproducibilities of tests on sample #20031

Parameter	unit	n	average	2.8 * sd	R(lit)
Aluminum as Al	mg/kg	21	9.0	4.2	6.7
Boron as B	mg/kg	18	6.9	3.9	13.3
Copper as Cu	mg/kg	20	12.7	1.7	3.1
Iron as Fe	mg/kg	21	30.4	5.4	8.0
Silicon as Si	mg/kg	20	12.5	2.9	7.8
Tin as Sn	mg/kg	21	10.4	5.8	9.0
Calcium as Ca	mg/kg	17	2.8	2.9	(0.1)
Phosphorus as P	mg/kg	19	319	59	77
Zinc as Zn	mg/kg	20	3.4	2.8	(0.3)

Table 6: reproducibilities of tests on sample #20032

Without further statistical calculations it can be concluded that for many tests there is a good

compliance of the group of participants with the relevant reference test methods. The problematic tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF MARCH 2020 WITH PREVIOUS PTS

	March 2020	April 2019	April 2018	April 2017
Number of reporting laboratories	24	24	22	17
Number of test results	414	421	391	362
Number of statistical outliers	25	22	18	23
Percentage of statistical outliers	6.0%	5.2%	4.6%	6.4%

Table 7: comparison with previous proficiency test

In proficiency tests, outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared against the requirements of the respective reference test methods. The conclusions are given in the following table.

Parameter	March 2020	April 2019	April 2018	April 2017
Total Acid Number	+/-	-	-	-
Density at 15°C	-	-	-	-
Flash Point PMcc	+/-	-	-	+
Kinematic Viscosity at 40°C	++	+	+	++
Kinematic Viscosity at 100°C	-	-		+
Viscosity Index	-	+/-		+
Membrane Filtration 5µm	++	++	n.e.	n.e.
Water	+	+	++	++
Level of contamination				
counts/mL (≥4 / ≥6 / ≥14µm)	-	-	-	
scale number (≥4 / ≥6 / ≥14µm)		-	-	
Elements				
Aluminum as Al	+	+	+	n.e.
Boron as B	++	++	+	+
Chromium as Cr	n.e.	n.e.	++	n.e.
Copper as Cu	+	+	+	(-)
Iron as Fe	+	+	+	+
Silicon as Si	++	++	++	n.e.
Tin as Sn	+	+	+	n.e.
Calcium as Ca	()	-	-	(-)
Phosphorus as P	+	-	++	+
Zinc as Zn	()	()	+/-	(-)

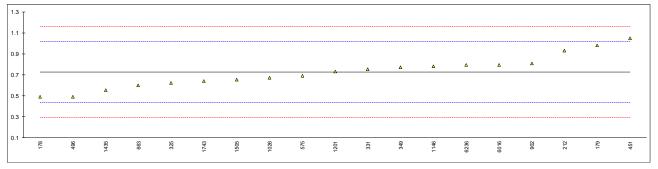
Table 8: comparison determinations against the reference test methods

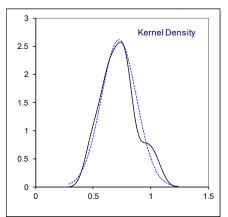
page 12 of 38 Gear Oil - used: iis17L02

The following performance categories were used:

++ : group performed much better than the reference test method

+ : group performed better than the reference test method
+/- : group performance equals the reference test method
- : group performed worse than the reference test method

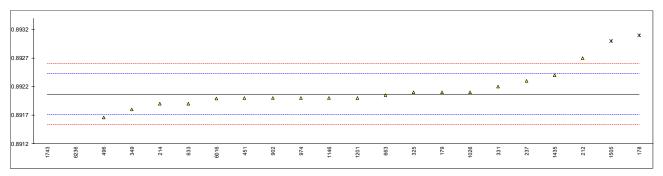

-- : group performed much worse than the reference test method

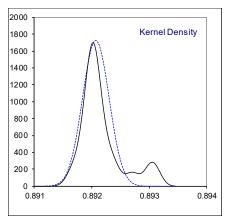

n.e. : not evaluated

APPENDIX 1

Determination of Total Acid Number on sample #20031; results in mg KOH/g

lab	method	value	mark	z(targ)	End Point Det.	Tit.solv.vol.	remarks
178	D664-A	0.49		-1.63	Buffer End Point pH 11	60 mL	
179	D664-A	0.98	С	1.75	Inflection Point	125 mL	fr. 3.57
212	D664-A	0.93		1.40	Inflection Point	125 mL	
214							
237							
257							
325	D664-A	0.62		-0.74	Buffer End Point pH 10	125 mL	
331	D664Mod.	0.753		0.18	Inflection Point	60 mL	
349	D664-A	0.77		0.30	Buffer End Point pH 10	125 mL	
451	D664-A	1.05		2.23	Buffer End Point pH 10	60 mL	
496	D664-A	0.49		-1.63	Buffer End Point pH 10	60 mL	
575	D664-A	0.69		-0.25	Buffer End Point pH 10	60 mL	
633							
663	D664-A	0.60		-0.87	Buffer End Point pH 10	60 mL	
862							
863							
902	D664-A	0.81		0.58	Inflection Point	60 mL	
962							
963							
974							
1026	D664-A	0.67		-0.39	Buffer End Point pH 10	125 mL	
1146	D664-A	0.783		0.39	Buffer End Point pH 11	125 mL	
1201	D664-A	0.73		0.02	Buffer End Point pH 10	125 mL	
1435	D664-A	0.555		-1.18			
1505	D974	0.655		-0.49			
1743	D664-B	0.64		-0.60	Buffer End Point pH 11	60 mL	
6016	D664-A	0.795		0.47			
6236	D8045	0.793		0.46	Inflection Point	60 mL	
	normality	OK					
	n	19					
	outliers	0					
	mean (n)	0.7265					
	st.dev. (n)	0.15238					
	R(calc.)	0.4267					
	st.dev.(D664-A:18e2, BEP 60mL)	0.14492					
	R(D664-A:18e2, BEP 60mL)	0.4058					
	compare						
	R(D664-A:18e2, BEP 125mL)	0.2259					
	R(D664-A:18e2, IP 60mL)	0.3095					
	R(D664-A:18e2, IP 125mL)	0.1568					

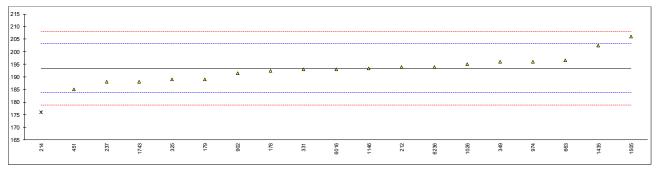


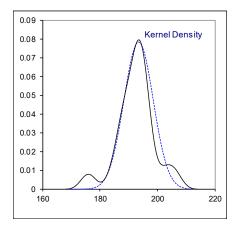


page 14 of 38 Gear Oil - used: iis17L02

Determination of Density at 15°C on sample #20031; results in kg/L

lab	method	value	mark	z(targ)	remarks
178	D4052	0.8931	R(0.05)	5.79	
179	D4052	0.8921		0.19	
212	ISO12185	0.8927		3.55	
214	D7042	0.8919	С	-0.93	reported 0.8919 kg/m ³
237	D4052	0.8923		1.31	
257					
325	D4052	0.8921		0.19	
331	ISO12185	0.8922	С	0.75	reported 892.2 kg/L
349	D4052	0.8918		-1.49	
451	D4052	0.8920		-0.37	
496	ISO12185	0.89166		-2.28	
575					
633	D4052	0.8919		-0.93	
663	D4052	0.89205		-0.09	
862					
863					
902	D4052	0.8920		-0.37	
962					
963					
974	D4052	0.8920		-0.37	
1026	D4052	0.8921		0.19	
1146	D4052	0.8920		-0.37	
1201	ISO12185	0.8920		-0.37	
1435	D4052	0.8924		1.87	
1505	D7042	0.8930	R(0.05)	5.23	
1743		0.889	ex,C	-17.17	excluded as test result was rounded too much, first reported 891
6016	D4052	0.89199		-0.43	
6236	In house	0.890	ex	-11.57	excluded as test result was rounded too much
	normality	not OK			
	n	18			
	outliers	2 (+2 ex)			
	mean (n)	0.892067			
	st.dev. (n)	0.0002311			
	R(calc.)	0.000647			
	st.dev.(ISO12185:96)	0.0001786			
	R(ISO12185:96)	0.0005			
	(= =======,				

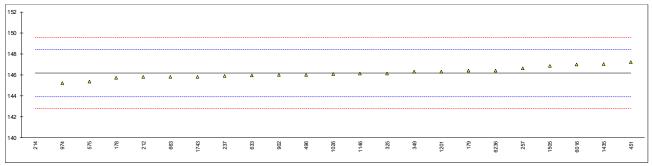


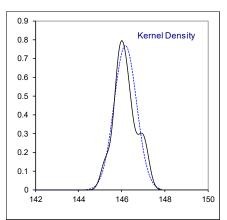


Gear Oil (used) iis20L02 page 15 of 38

Determination of Flash Point PMcc on sample #20031; results in °C

lab	method	value	mark	z(targ)	remarks
178	D93-A	192.5		-0.20	
179	D93	189.0		-0.91	
212	D93-A	194.0		0.11	
214	D93-A	176	D(0.01)	-3.56	
237	D93-B	188		-1.11	
257					
325	D93-A	189		-0.91	
331	D93-A	192.9		-0.11	
349	D93-A	196		0.52	
451	D93-A	185.0		-1.72	
496					
575					
633					
663	D93-A	196.5		0.62	
862					
863					
902	D93-A	191.5		-0.40	
962					
963	500 4				
974	D93-A	196		0.52	
1026	D93-A	195.0		0.31	
1146	D93-A	193.4		-0.01	
1201	D00 A			4.04	
1435	D93-A	202.5		1.84	
1505	D3828	206		2.56	
1743	ISO2719-A	188	0	-1.11	fort and the 1040.7
6016	D6450	193	С	-0.09	first reported 218.7
6236	D93-C	194		0.11	
	normality	suspect			
	n	18			
	outliers	1			
	mean (n)	193.46			
	st.dev. (n)	5.089			
	R(calc.)	14.25			
	st.dev.(D93-A:19)	4.906			
	R(D93-A:19)	13.74			
	(

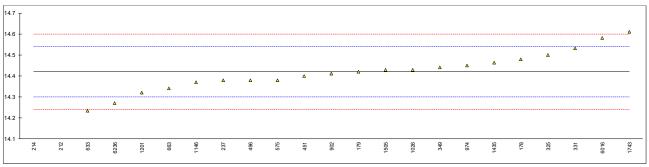


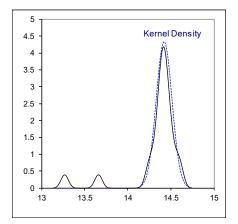


page 16 of 38 Gear Oil - used: iis17L02

Determination of Kinematic Viscosity at 40°C on sample #20031; results in mm²/s

lab	method	value	mark	z(targ)	remarks
178	D445	145.7		-0.42	
179	D445	146.4		0.19	
212	ISO3104	145.8		-0.34	
214	D7042	134.302	R(0.01)	-10.48	
237	D445	145.9		-0.25	
257	D7279 corrected to D445	146.63		0.40	
325	D445	146.15		-0.03	
331					
349	D445	146.3		0.11	
451	D7279 corrected to D445	147.2		0.90	
496	D445	146.01		-0.15	
575	D7279 corrected to D445	145.35		-0.73	
633	D445	145.952602		-0.20	
663	D445	145.8		-0.34	
862					
863					
902	D445	146.0		-0.16	
962					
963					
974	D445	145.2		-0.86	
1026	D445	146.1		-0.07	
1146	D445	146.13		-0.04	
1201	D445	146.3		0.11	
1435	D7042	147.02		0.74	
1505	D7042	146.84		0.58	
1743	D7279 corrected to D445	145.8		-0.34	
6016	D7042	146.990		0.71	
6236	D7279 corrected to D445	146.40		0.19	
	normality	OK			
	n	22			
	outliers	1			
	mean (n)	146.181			
	st.dev. (n)	0.5201			
	R(calc.)	1.456			
	st.dev.(D445:19a)	1.1339			
	R(D445:19a)	3.175			R(D445:19a - used formulated oils)

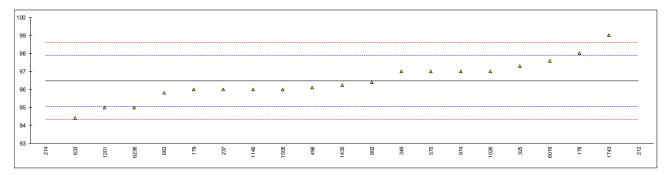


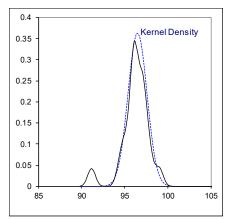


Gear Oil (used) iis20L02 page 17 of 38

Determination of Kinematic Viscosity at 100°C on sample #20031; results in mm²/s

lab	method	value	mark	z(targ)	remarks
178	D445	14.48		1.01	
179	D445	14.42		0.00	
212	ISO3104	13.66	R(0.01)	-12.75	
214	D7042	13.268	R(0.01)	-19.33	
237	D445	14.38		-0.67	
257					
325	D445	14.50		1.34	
331	D7279Mod.	14.53		1.85	
349	D445	14.44		0.34	
451	D7279 corrected to D445	14.4		-0.33	
496	D445	14.380		-0.67	
575	D7279 corrected to D445	14.38		-0.67	
633	D445	14.2347964		-3.11	
663	D445	14.34		-1.34	
862					
863					
902	D445	14.41		-0.17	
962					
963					
974	D445	14.45		0.51	
1026	D445	14.43		0.17	
1146	D445	14.37		-0.84	
1201	D445	14.32		-1.68	
1435	D7042	14.462		0.71	
1505	D7042	14.429		0.15	
1743	D7279 corrected to D445	14.61		3.19	
6016	D7042	14.582		2.72	
6236	D7279 corrected to D445	14.27		-2.52	
	normality	OK			
	n	21			
	outliers	2			
	mean (n)	14.420			
	st.dev. (n)	0.0918			
	R(calc.)	0.257			
	st.dev.(D445:19a)	0.0596			
	R(D445:19a)	0.167			R(D445:19a - used formulated oils)
	,				•



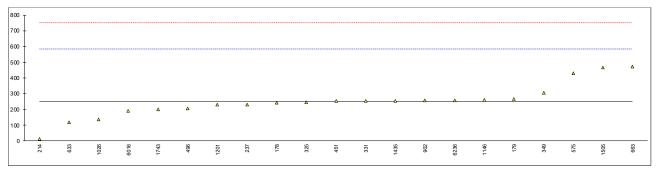


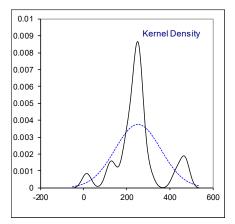
page 18 of 38 Gear Oil - used: iis17L02

Determination of Viscosity Index on sample #20031

lab	method	value	mark	z(targ)	remarks
178	D2270	98		2.15	
179	D2270	96		-0.65	
212	D2270	173	ex, E	107.15	excluded as statistical outlier in KV 100°C, iis calculated 87
214	D2270	91.13	ex	-7.47	excluded as statistical outliers in KV 40°C and KV 100°C
237	D2270	96		-0.65	
257					
325	D2270	97.3		1.17	
331					
349	D2270	97		0.75	
451					
496	D2270	96.1		-0.51	
575	D2270	97		0.75	
633	D2270	94.415		-2.87	
663	D2270	95.82		-0.90	
862					
863	D0070				
902	D2270	96.4		-0.09	
962					
963	D0070	07		0.75	
974 1026	D2270 D2270	97 97		0.75 0.75	
1146	D2270 D2270	97 96		-0.65	
1201	D2270 D2270	96 95		-0.05 -2.05	
1435	D2270 D2270	96.225		-0.34	
1505	D2270	96.223		-0.65	
1743	ISO2909	99		3.55	
6016	D2270	97.579		1.56	
6236	D2270	95		-2.05	
0200	222.0			2.00	
	normality	OK			
	n	19			
	outliers	0 (+2 ex)			
	mean (n)	96.47 ´			
	st.dev. (n)	1.101			
	R(calc.)	3.08			
	st.dev.(D2270:10)	0.714			
	R(D2270:10)	2			

Gear Oil (used) iis20L02 page 19 of 38


Determination of Membrane Filtration 5µm on sample #20031; results in %M/M

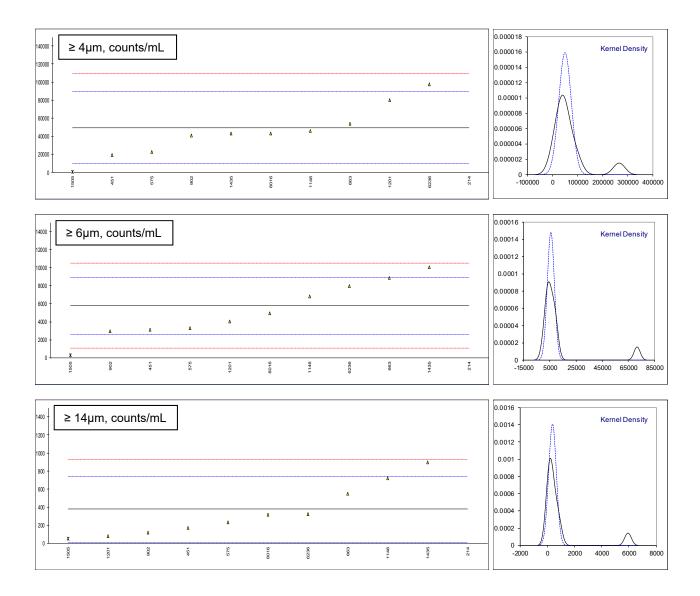

lab	method	value	mark	z(targ)	remarks
178					
179					
212					
214					
237					
257					
325	D4055	0.0077		-0.40	
331					
349					
451					
496					
575					
633	D4055	0.5381	D(0.01)	33.32	
663					
862					
863					
902					
962 963					
963 974					
1026		0.016		0.13	
1146		0.010		0.13	
1201					
1435	D4055	0.0132		-0.05	
1505	D4898	0.013		-0.06	
1743	2 .000				
6016					
6236	D4055	0.020		0.38	
	normality	unknown			
	n	5			
	outliers	1			
	mean (n)	0.0140			
	st.dev. (n)	0.00451			
	R(calc.)	0.0126			
	st.dev.(D4055:04)	0.01573			
	R(D4055:04)	0.0440			
	,				
0.1 T					
0.09 -					
0.08 -					
0.07					
0.06 +					
0.05 -					
0.04 -					
0.03 -					
0.02 -					Δ
0.01	Δ	-		-	
0	325	1505		1435	0.528 6.33

page 20 of 38 Gear Oil - used: iis17L02

Determination of Water on sample #20031; results in mg/kg

lab	method	value	mark z(targ)	remarks
178	D6304-C	242	-0.06	
179	D6304	266	0.09	
212				
214	ISO12937	14	-1.43	
237	D6304-C	230.2	-0.13	
257				
325	D6304-C	245	-0.04	
331	INH-06	253.67	0.01	
349	D6304-C	305	0.32	
451	D6304-C	253	0.01	
496	D6304-C	206	-0.27	
575	D6304-A	428.29	1.06	
633	D6304-C	118.6	-0.80	
663	D6304-C	471	1.32	
862				
863				
902	D6304-C	257.1	0.03	
962				
963				
974	D0004 0	407	0.00	
1026	D6304-C	137	-0.69	
1146	D6304-C	260	0.05	
1201	D6304-C	230	-0.13	
1435	D6304-A	255	0.02	
1505	D6304-A	467	1.29	
1743	D6304 A	200	-0.31	
6016	D6304-A	189.7	-0.37	
6236	D6304-A	258	0.04	
	normality	suspect		
	n	21		
	outliers	0		
	mean (n)	251.74		
	st.dev. (n)	106.273		
	R(calc.)	297.57		
	st.dev.(D6304:16e1)	166.375		
	R(D6304:16e1)	465.85		

Gear Oil (used) iis20L02 page 21 of 38

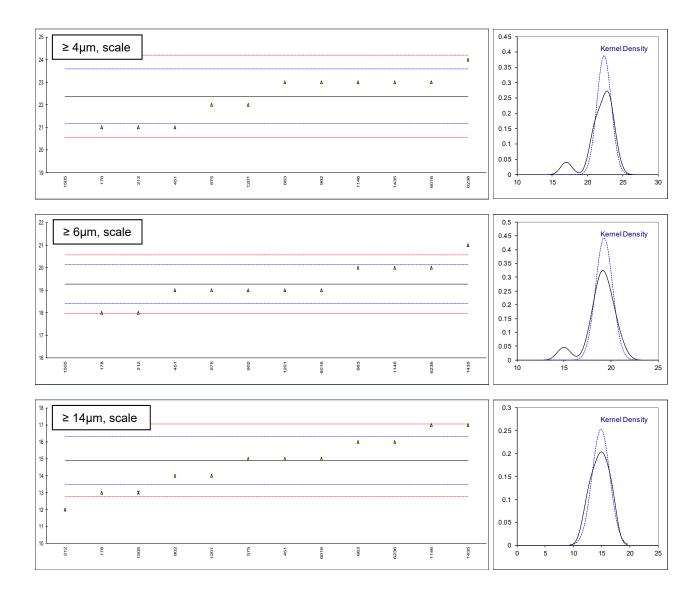

Determination of Level of Contamination on sample #20031; results in counts/mL

lab	method	≥ 4 µm	mark	z(targ)	≥ 6 µm	mark	z(targ)	≥ 14 µm	mark	z(targ)
178										
179										
212										
214	ISO4406	265652.0	C,D(0.01)	10.78	71595.0	C,D(0.01)	41.94	5927.7	C,D(0.01)	30.35
237										
257										
325										
331										
349	D7047	40500		1.50	2420		4.00	400		4.45
451 496	D7647	19593		-1.50	3126		-1.69	169		-1.15
496 575	D7647	22717		-1.34	3311		1 57	234		-0.79
633	D7647						-1.57			-0.79
663	D7647	54144		0.23	8831		1.94	551		0.94
862	D7047	34 144		0.23	0031		1.94			0.94
863										
902	D7647	40634		-0.45	2979		-1.79	120		-1.42
962	D1041			-0.40	2070		-1.75			-1.42
963										
974										
1026										
1146	ISO11500	46000		-0.18	6800		0.65	720		1.86
1201	D7647	79793		1.51	4008		-1.13			-1.64
1435	D7647	43152.80		-0.32	10048.80		2.72			2.84
1505	D4898	749	ex	-2.44	292	ex	-3.50	52	ex	-1.79
1743										
6016	ISO4406	43300		-0.32	4960		-0.52	318		-0.33
6236	D7647	97383.3		2.38	7968.8		1.39	322.7		-0.31
		OK			OK			OK		
	normality	OK			OK 9			OK 9		
	n outliers	9 1 (+1 ex)			-			1 (+1 ex)		
	mean (n)	49635			1 (+1 ex) 5781			379.2		
	st.dev. (n)	25033.0			2696.3			283.69		
	R(calc.)	70092			7550			794.3		
	st.dev.(D7647:10)	20031.4			1569.2			182.83		
	R(D7647:10)	56088			4394			511.9		
	1401041.10)	1 00000			-100 -1			1011.0		

Lab 214: reported test results as scale

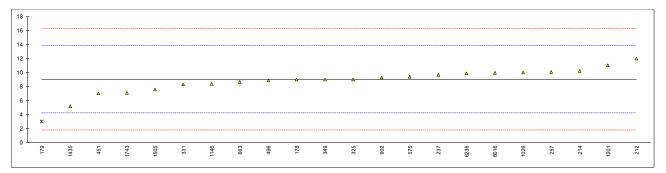
Lab 1505: test results were excluded as there are statistical outliers in scale

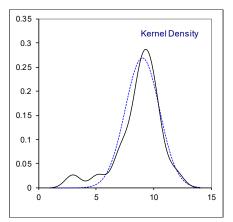
page 22 of 38 Gear Oil - used: iis17L02


Determination of Level of Contamination acc. to ISO4406 scale on sample #20031; results in scale number

lab	method	≥ 4 µm	mark	z(targ)	≥ 6 µm	mark	z(targ)	≥ 14 µm	mark	z(targ)
178	ISO4406	21		-2.25	18		-2.97	13		-2.67
179										
	ISO4406	21		-2.25	18		-2.97	12		-4.07
214										
237										
257 325										
325										
349										
451	ISO4406	21		-2.25	19		-0.64	15		0.13
496	1004400			-2.20			-0.04			0.10
575	ISO4406	22		-0.60	19		-0.64	15		0.13
633										
663	D7647	23		1.05	20		1.70	16		1.53
862										
863										
902	ISO4406	23		1.05	19		-0.64	14		-1.27
962										
963										
974										
1026	1004400			4.05			4.70	47		
1146	ISO4406 ISO4406	23 22	E	1.05	20		1.70	17 14	_	2.93 -1.27
1201 1435	ISO4406		_	-0.60 1.05	19		-0.64 4.03	17	E	
1505	ISO4406	23 17	D(0.01)	-8.83	21 15	D(0.01)	-9.97	13	ex	2.93 -2.67
1743	1304400	1 <i>7</i> 	D(0.01)	-0.03		D(0.01)	-9.91		CX	-2.07
6016	ISO4406	23		1.05	19		-0.64	15		0.13
6236	ISO4406	24		2.70	20		1.70	16		1.53
	normality	OK			OK			OK		
	n	11			11			11		
	outliers	1			1			0 (+1 ex)		
	mean (n)	22.4			19.3			14.9		
	st.dev. (n)	1.03			0.90			1.58		
	R(calc.)	2.9			2.5			4.4		
	st.dev.(D7647:10)	0.61			0.43			0.71		
	R(D7647:10)	1.7			1.2			2.0		

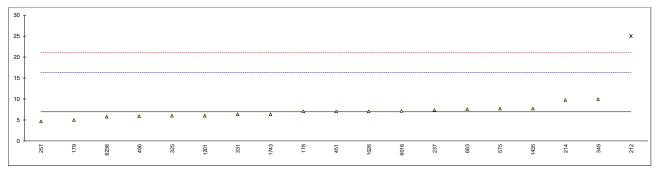
Lab 1201: iis calculated 23 and 13 respectively

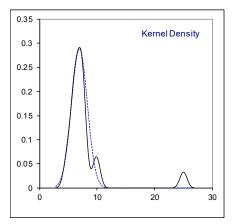

Lab 1505: test result was excluded as other two test results were statistical outliers


page 24 of 38 Gear Oil - used: iis17L02

Determination of Aluminum as AI on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	9		-0.01	
179	D5185	3	R(0.05)	-2.51	
212	D5185	12		1.24	
214		10.215		0.50	
237	D5185	9.647		0.26	
257	D6595	10.06		0.43	
325	D5185	9		-0.01	
331	D5185Mod.	8.29		-0.30	
349	D5185	9		-0.01	
451	D5185	7		-0.84	
496	D5185	8.88		-0.06	
575	D6595	9.4		0.16	
633					
663	D5185	8.66		-0.15	
862					
863					
902	D5185	9.24		0.09	
962					
963					
974					
1026	D5185	10		0.41	
1146	D4951	8.403		-0.26	
1201	D5185	11		0.82	
1435	D5185	5.178		-1.60	
1505	D5185	7.56		-0.61	
1743	D5185	7.10		-0.80	
6016	D5185	9.955		0.39	
6236	D5185	9.9		0.36	
	normality	suspect			
	n	21			
	outliers	1			
	mean (n)	9.023			
	st.dev. (n)	1.4871			
	R(calc.)	4.164			
	st.dev.(D5185:18)	2.4045			
	R(D5185:18)	6.733			
	(/				

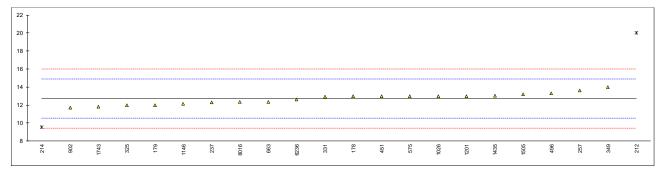


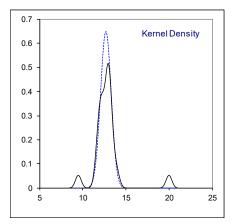


page 26 of 38 Gear Oil - used: iis17L02

Determination of Boron as B on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	7		0.02	
179	D5185	5		-0.40	
212	D5185	25	D(0.01)	3.82	
214		9.719		0.59	
237	D5185	7.362		0.09	
257	D6595	4.68		-0.47	
325	D5185	6		-0.19	
331	D5185Mod.	6.39		-0.11	
349	D5185	10		0.65	
451	D5185	7		0.02	
496	D5185	5.91		-0.21	
575	D6595	7.7		0.17	
633					
663	D5185	7.57		0.14	
862					
863					
902					
962					
963					
974					
1026	D5185	7		0.02	
1146					
1201	D5185	6		-0.19	
1435	D5185	7.712		0.17	
1505					
1743	D5185	6.39		-0.11	
6016	D5185	7.206		0.06	
6236	D5185	5.8		-0.24	
	normality	OK			
	n	18			
	outliers	1			
	mean (n)	6.913			
	st.dev. (n)	1.3828			
	R(calc.)	3.872			
	st.dev.(D5185:18)	4.7335			
	R(D5185:18)	13.254			
	,				

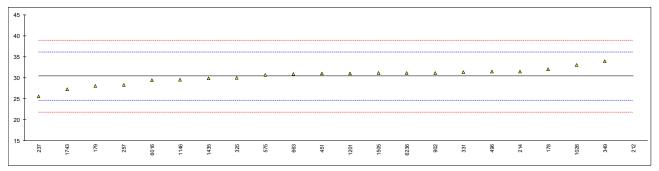


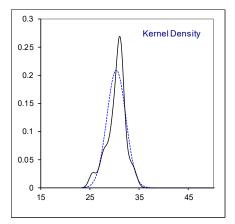


Gear Oil (used) iis20L02 page 27 of 38

Determination of Copper as Cu on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	13		0.26	
179	D5185	12		-0.66	
212	D5185	20	R(0.01)	6.68	
214		9.532	R(0.01)	-2.92	
237	D5185	12.29		-0.39	
257	D6595	13.61		0.82	
325	D5185	12		-0.66	
331	D5185Mod.	12.91		0.18	
349	D5185	14		1.18	
451	D5185	13		0.26	
496	D5185	13.3		0.54	
575	D6595	13		0.26	
633					
663	D5185	12.37		-0.32	
862					
863					
902	D5185	11.71		-0.92	
962					
963					
974					
1026	D5185	13		0.26	
1146	D4951	12.15		-0.52	
1201	D5185	13		0.26	
1435	D5185	13.01		0.27	
1505	D5185	13.2		0.45	
1743	D5185	11.8		-0.84	
6016	D5185	12.343		-0.34	
6236	D5185	12.6		-0.11	
	normality	OK			
	n	20			
	outliers	2			
	mean (n)	12.715			
	st.dev. (n)	0.6156			
	R(calc.)	1.724			
	st.dev.(D5185:18)	1.0898			
	R(D5185:18)	3.052			
	, ,				

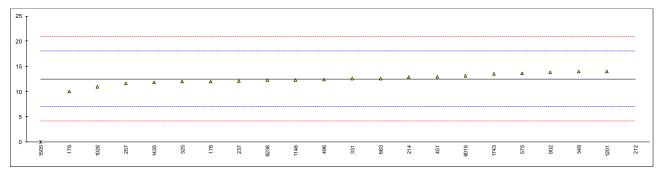


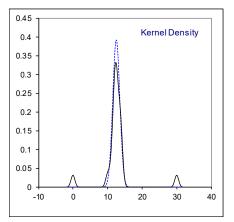


page 28 of 38 Gear Oil - used: iis17L02

Determination of Iron as Fe on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	32	_	0.56	
179	D5185	28		-0.84	
212	D5185	72	R(0.01)	14.59	
214		31.509		0.39	
237	D5185	25.5675		-1.69	
257	D6595	28.33		-0.73	
325	D5185	30		-0.14	
331	D5185Mod.	31.37		0.34	
349	D5185	34		1.26	
451	D5185	31		0.21	
496	D5185	31.48		0.38	
575	D6595	30.7		0.11	
633					
663	D5185	30.94		0.19	
862					
863					
902	D5185	31.11		0.25	
962					
963					
974					
1026	D5185	33		0.91	
1146	D4951	29.53		-0.30	
1201	D5185	31		0.21	
1435	D5185	29.90		-0.17	
1505	D5185	31.1		0.25	
1743	D5185	27.3		-1.09	
6016	D5185	29.43		-0.34	
6236	D5185	31.1		0.25	
	normality	suspect			
	n	21			
	outliers	1			
	mean (n)	30.398			
	st.dev. (n)	1.9147			
	R(calc.)	5.361			
	st.dev.(D5185:18)	2.8518			
	R(D5185:18)	7.985			
	(/				

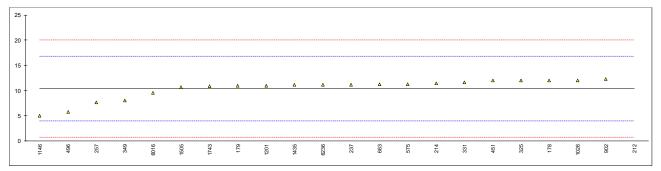


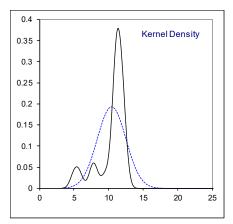


Gear Oil (used) iis20L02 page 29 of 38

Determination of Silicon as Si on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	12		-0.19	
179	D5185	10		-0.91	
212	D5185	30	R(0.01)	6.29	
214		12.833		0.11	
237	D5185	12.14		-0.14	
257	D6595	11.64		-0.32	
325	D5185	12		-0.19	
331	D5185Mod.	12.59		0.02	
349	D5185	14		0.53	
451	D5185	13		0.17	
496	D5185	12.4		-0.05	
575	D6595	13.6		0.38	
633					
663	D5185	12.59		0.02	
862					
863					
902	D5185	13.84		0.47	
962					
963					
974					
1026	D5185	11		-0.55	
1146	D4951	12.31		-0.08	
1201	D5185	14		0.53	
1435	D5185	11.79		-0.27	
1505	D5185	0.0	R(0.01)	-4.51	
1743	D5185	13.5		0.35	
6016	D5185	13.11		0.21	
6236	D5185	12.3		-0.08	
	normality	OK			
	n	20			
	outliers	2			
	mean (n)	12.532			
	st.dev. (n)	1.0181			
	R(calc.)	2.851			
	st.dev.(D5185:18)	2.7763			
	R(D5185:18)	7.774			
	11(20100.10)				

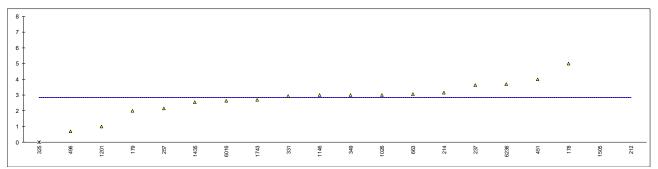


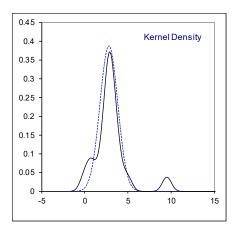


page 30 of 38 Gear Oil - used: iis17L02

Determination of Tin as Sn on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	12		0.49	
179	D5185	11		0.18	
212	D5185	36	R(0.01)	7.97	
214		11.478		0.33	
237	D5185	11.207		0.24	
257	D6595	7.63		-0.87	
325	D5185	12		0.49	
331	D5185Mod.	11.64		0.38	
349	D5185	8		-0.76	
451	D5185	12		0.49	
496	D5185	5.74	С	-1.46	first reported 0.59
575	D6595	11.3		0.27	
633					
663	D5185	11.27		0.26	
862					
863					
902	D5185	12.30		0.58	
962					
963					
974					
1026	D5185	12		0.49	
1146	D4951	4.996		-1.69	
1201	D5185	11		0.18	
1435	D5185	11.17		0.23	
1505	D5185	10.7		0.08	
1743	D5185	10.9		0.15	
6016	D5185	9.518		-0.28	
6236	D5185	11.2		0.24	
	normality	suspect			
	n	21			
	outliers	1			
	mean (n)	10.431			
	st.dev. (n)	2.0757			
	R(calc.)	5.812			
	st.dev.(D5185:18)	3.2094			
	R(D5185:18)	8.986			
	14(20100.10)	0.000			

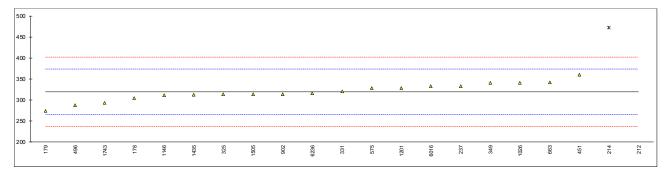


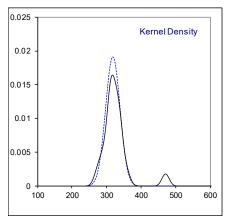


Gear Oil (used) iis20L02 page 31 of 38

Determination of Calcium as Ca on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	5			
179	D5185	2			
212	D5185	54	D(0.01)		
214		3.157			
237	D5185	3.631			
257	D6595	2.15			
325	D5185	0	ex,C		first reported 8, test result excluded as 0 is not a real value
331	D5185Mod.	2.95			
349	D5185	3			
451	D5185	4			
496	D5185	0.69			
575					
633					
663	D5185	3.07			
862					
863	DE405				
902	D5185	<40			
962					
963					
974 1026	D5185	3			
1146	D4951	3 2.993			
1201	D5185	2.993 1			
1435	D5185	2.559			
1505	D5185	9.55	D(0.05)		
1743	D5185	2.70	C (0.03)		first reported 6.84
6016	D5185	2.623	C		ilist reported 0.04
6236	D5185	3.7			
0200	D3103	5.7			
	normality	suspect			
	n	17 ່			
	outliers	2 (+1 ex)			
	mean (n)	2.837			
	st.dev. (n)	1.0293			
	R(calc.)	2.882			
	st.dev.(D5185:18)	(0.0208)			
	R(D5185:18)	(0.058)			application range: 40 – 9000 mg/kg
	compare				
	R(Horwitz)	(1.086)			

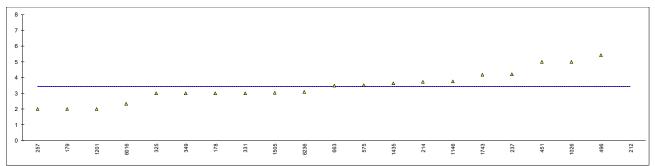


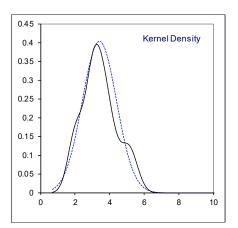


page 32 of 38 Gear Oil - used: iis17L02

Determination of Phosphorus as P on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	304		-0.56	
179	D5185	274		-1.65	
212	D5185	863	R(0.01)	19.81	
214		471.93	R(0.01)	5.56	
237	D5185	333	, ,	0.50	
257					
325	D5185	313		-0.23	
331	D5185Mod.	320.88		0.06	
349	D5185	341		0.79	
451	D5185	360		1.48	
496	D5185	287.5		-1.16	
575	D6595	327.97		0.32	
633					
663	D5185	342.38		0.84	
862					
863					
902	D5185	314		-0.19	
962					
963					
974					
1026	D5185	341		0.79	
1146	D4951	311.3		-0.29	
1201	D5185	328		0.32	
1435	D5185	312.5		-0.25	
1505	D5185	313.7		-0.20	
1743	D5185	293		-0.96	
6016	D5185	332.7	С	0.49	first reported 409.6
6236	D5185	316.2		-0.11	
	normality	OK			
	n	19			
	outliers	2			
	mean (n)	319.270			
	st.dev. (n)	20.8961			
	R(calc.)	58.509			
	st.dev.(D5185:18)	27.4403			
	R(D5185:18)	76.833			
	(/				





Gear Oil (used) iis20L02 page 33 of 38

Determination of Zinc as Zn on sample #20032; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D5185	3			
179	D5185	2			
212	D5185	21	R(0.01)		
214		3.733			
237	D5185	4.2			
257	D6595	2.0			
325	D5185	3			
331	D5185Mod.	3.01			
349	D5185	3			
451	D5185	5			
496	D5185	5.42	С		first reported 0.31
575	D6595	3.5			
633					
663	D5185	3.47			
862					
863	DE405				
902	D5185	<60			
962					
963 974					
1026	D5185	 5			
1146	D4951	3.748			
1201	D5185	2			
1435	D5185	3.625			
1505	D5185	3.04			
1743	D5185	4.18			
6016	D5185	2.335			
6236	D5185	3.1			
0200	20.00	· · ·			
	normality	OK			
	n	20			
	outliers	1			
	mean (n)	3.418			
	st.dev. (n)	0.9896			
	R(calc.)	2.771			
	st.dev.(D5185:18)	(0.1146)			
	R(D5185:18)	(0.321)			application range: 60-1600 mg/kg
	compare				
	R(Horwitz)	(1.273)			

page 34 of 38 Gear Oil - used: iis17L02

APPENDIX 2 Other reported test results

Reported test results of other elements on sample #20032; results in mg/kg

	lab	Barium as Ba	Cadmium as Cd	Chromium as Cr	Lead as Pb	Lithium as Li	Magnesium as Mg	Manganese as Mn
•	178	0	1	0	0		1	1
	179	<1	<1	<1	<1	<1	<1	<1
	212	10	14	11	26	0	15	22
	214	0.000	0.000	0.052	0.630	0.002	0.210	0.000
	237	<1		<1	<1		<1	1.10
	257	0.1	0.0	0.21	0.0		0.31	0.74
	325	0		0	0		0	0
	331	0.05	0.02	0.30	0.12	0.06	0.22	0.44
	349	0	0	0	1	0	0	0
	451	< 1	< 1	< 1	< 1	< 1	< 1	< 1
	496	0.31	0.67	0.185	0.38	0.45	0.46	0.69
	575			0.4				1.1
	633							
	663	<0.5		<1	<1		<1	<1
	862							
	863							
	902	<0.5		<1	<10		<5	<5
	962							
	963							
	974							
	1026	0		0	0		0	
	1146	0.4633		0.3243	0.2628	0.1497	0.5578	0.4789
	1201	<1	<1	<1	<1	<1	<1	<1
	1435	0.2149	0.2081	0.2876	0.2792	0.1944	0.1795	0.5253
	1505	0.26	0.22	0.34	0.0	0.27	0.64	0.56
	1743	0.05	0.01	0.29	0.11	0.59	0.23	0.40
	6016	<1		<1	<1		<1	<1
	6236	0.1		0.4	1.0	0.2	0.3	0.4

lab	Molybdenum as Mo	Nickel as Ni	Potassium as K	Silver as Ag	Sodium as Na	Titanium as Ti	Vanadium as V
178	1		0	0	1	0	0
179	<1	<1	<1	<0.10	<3	<1	<1
212	23	19	21	5	2	10	9
214	0.917	1.107	0.105	0.000	1.540	0.350	0.006
237	<1	<1	<1	<1	<1		<1
257	0.0	0.14	0.19	0.07	0.81	0.08	0.02
325	0	0	0	0	0	0	0
331	0.01	0.07	0.44	0.01	0.21	0.04	0
349	0	0	0	0	0	0	0
451	< 1	< 1	1	< 1	1	< 1	< 1
496	<0.1	<0.1	0.93	<0.1	0.108 C	<0.1	<0.1
575	0.4						
633							
663	<1	<1	1.78	<0.5	<1	<1	<1
862							
863							
902	<5	<5				<5	<1
962							
963							
974							
1026	0	0			0	0	0
1146		0.1359		0.0476	0.4237	0.0699	0.0682
1201	<1	<1	<1	<1	<1	<1	<1
1435	0.0202	0.1764	0.1251	0.0694	0.2708	0.0696	0.0359
1505	0.0	0.14		0.0	0.56	0.06	0.0
1743	0.08	0.02	0.00	0.00	1.38	0.04	0.01
6016	<1	<1	<1		<1	<1	<1
6236	0.1	0.3	1.7	0.0	0.6	0.1	0.0

Lab 496 first reported 0.64

Gear Oil (used) iis20L02 page 35 of 38

APPENDIX 3 Analytical details

Level of Contamination

	Sample	-		Manufacturer and the model of your test equipment
lab	Sample rolled	Sample diluted	Dilution ratio	Manufacturer and the model of your test equipment
178	Yes	Yes	1:1	CINRG
179			1.1	Olivino
212	Yes	No		PAMAS Gepruft
214	Yes	No		PAMS 40
237				
257				
325	Yes	No		
331				
349				
451	No	No		
496				
575	No	Yes	50:50	PAMAS S40
633				
663	Yes	Yes	1:1	PAMAS model PAMAS SBSS-C
862				
863				
902	Yes	Yes	50 % sample to 50 % diluent, auto-diluting	The CINRG CS-APC-2 fully automated auto-diluting particle counting instrument with Klotz LDS Sensor, Klotz USB counter, Baumer UNKC sample level sensor, Gilson 215 liquid handler and CINRG Systems controller
962				
963				
974				
1026	No			
1146	No			Pamas SBSS-C HCB-LD-50/50
1201				
1435				
1505				
1743				
6016				
6236	Yes	Yes	automated dilution	CINRG LDS 4188 The CINRG equipment makes an automated dilution. it is equipped with a laser that determines the volume of oil in a cup with a max of 30ml. It makes an automated dilution up to 30 ml. Our technicians pour out between 10-15 ml of oil.

page 36 of 38 Gear Oil - used: iis17L02

APPENDIX 4

Number of participants per country

- 1 lab in ALGERIA
- 3 labs in BELGIUM
- 2 labs in CHINA, People's Republic
- 1 lab in COLOMBIA
- 2 labs in FRANCE
- 1 lab in GERMANY
- 1 lab in GREECE
- 1 lab in KAZAKHSTAN
- 1 lab in MOROCCO
- 3 labs in NETHERLANDS
- 1 lab in NIGERIA
- 1 lab in PHILIPPINES
- 2 labs in SAUDI ARABIA
- 1 lab in SPAIN
- 1 lab in TANZANIA
- 1 lab in THAILAND
- 1 lab in TURKEY
- 1 lab in UNITED ARAB EMIRATES
- 1 lab in UNITED KINGDOM
- 2 labs in UNITED STATES OF AMERICA

Gear Oil (used) iis20L02

APPENDIX 5

Abbreviations

C = final test result after checking of first reported suspect test result

D(0.01) = outlier in Dixon's outlier test
D(0.05) = straggler in Dixon's outlier test
G(0.01) = outlier in Grubbs' outlier test
G(0.05) = straggler in Grubbs' outlier test
DG(0.01) = outlier in Double Grubbs' outlier test
DG(0.05) = straggler in Double Grubbs' outlier test

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test E = possibly an error in calculations

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

fr. = first reported
n.a. = not applicable
n.e. = not evaluated
n.d. = not detected

SDS = Safety Data Sheet

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ASTM E178:02
- 3 ASTM E1301:95(2003)
- 4 ISO5725:86
- 5 ISO5725:94, parts 1-6
- 6 ISO13528:05
- 7 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 8 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 9 IP367:84
- 10 DIN 38402 T41/42
- 11 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 12 J.N. Miller, Analyst, 118, 455, (1993)
- 13 Analytical Methods Committee Technical Brief, No 4, January 2001
- 14 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364 (2002)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, <u>25(2)</u>,165-172, (1983)
- 16 Horwitz, R. Albert, J. AOAC Int, 79, 3, 589, (1996)

page 38 of 38 Gear Oil - used: iis17L02